
Research Paper
Impact Factor: 3.996
Peer Reviewed & Indexed Journal

IJMSRR
E- ISSN - 2349-6746

ISSN -2349-6738

International Journal of Management and Social Science Research Review, Vol.1, Issue – 29, Nov-2016 Page 202

SOFTWARE RELIABILITY MODELS IN IMPROVEMENT OF PERFORMANCE MANAGEMENT

Dr. B.Ramadevi* Dr.T.Narayana Murty**
*Assistant Professor in CSE, Vignan’s Lara Institute of Technology and Science, Guntur.

**Director, Nimra College of Business Management, Vijayawada.

Abstract
Software reliability models describe the failure behavior of the software. The models are used to evaluate the software
quantitatively. They assess the reliability of the software by predicting faults or failures for a software. Reliability is one of
important quality attributes of the software in which software end user is more interested rather than the software developer.
Hence, the performance of software can be improved by incorporating important quality attributes like reliability,
maintainability and availability of the software along with performance attributes like response time and throughput. The
paper discusses about the role played by important software reliability models in analyzing the failure prediction of the
software. It also explores the strong relationship that exists between quality attributes and performance attributes. With some
illustrations highlighting the necessity of in-depth understanding of the link that exists between reliability and performance of
the software, the derived knowledge helps in improving the performance of the software sustainably over a period of time and
manages the software more effectively.

Keywords: Software Reliability; Software Availability, Software Performance.

Introduction
Software reliability is an important aspect of functioning of a software system which may be a combination of different
software sub systems or embedded in a computing environment that provides inputs to the software system. Software
reliability is the probability that the system will function without failure for a specified period of time under stated conditions.
Due to error in software by human action or discrepancy between computed or measured value and specified value of some
important reliability parameter may lead to fault in the software. The fault, if unchecked may or may not result in software
failure depending on the operating conditions. The software reliability is similar to hardware reliability in some aspects. Most
of the reliability quantities are defined in terms of time. The execution time of software (CPU time) is the actual time spent
by the computer in executing the software. The clock time is the time elapsed between starting of computer and shutting it
down including idle time . All these times can be converted into calendar time which will be useful for system development
personnel to calculate human effort required to develop software. Some of the reliability measures are cumulative failure
function, failure intensity function, failure rate function and mean time to failure function .The operational profile of a system
is defined as the set of operations that the software can execute along with probability with which they will occur. It will help
us to identify operations which are failure prone and also affect reliability and performance of the software the software
reliability measurement involves use of failure data by software reliability models to estimate and predict software reliability.
The type of failure data used by number of software reliability models belongs to two types—Failure count data and time
between failures Software reliability model specifies the general form of the dependence of the failure process on the
principal factors that affect it—fault introduction, fault removal and operational environment Fault prevention is by
construction to avoid fault occurrences. The fault removal talks about detection by testing and removal of fault. Fault
tolerance highlights the issues of redundancy to accommodate any failure in operation.

Fault/failure forecasting predicts the presence of faults and occurrence and consequences of failure Software reliability
models consist of a wide variety of models based on statistical theory and Bayesian approach.

Objectives of the Study
1. To know the importance of software reliability in the time domain based models overcast the other type of models in

terms of usability and wider application.
2. To study the suitability and operational environment to form a tree based model which finds its application in large

commercial software.

Discussions and Results
Time between Failures (TBF) Models
The common approach is to assume that time between i th and (i – 1) failure will follow a certain distribution whose
parameters will depend on number of faults remaining in the program during the given interval. From this, the estimates of
the parameters are calculated which give reliability and other parameters of interest on subsequent calculations. Another
approach is to treat the failure times as realizations of a stochastic process and an appropriate time-series model to describe
the underlying failure process.

Research Paper
Impact Factor: 3.996
Peer Reviewed & Indexed Journal

IJMSRR
E- ISSN - 2349-6746

ISSN -2349-6738

International Journal of Management and Social Science Research Review, Vol.1, Issue – 29, Nov-2016 Page 203

Example-Jelinski-Moranda model One of the earliest models proposed which is still being applied today is the de-
eutrophication model developed by Jelinski and Moranda, The elapsed time between failure is taken to follow an exponential
distribution with a parameter that is proportional to the number of remaining faults in the software, i.e. Mean time between
failures (MTBF) is 1/  [N  i- 1]. Here t is any point in time between the occurrence of the (i – 1)th & ith fault
occurrence.The quantity  is the proportionality constant and N is the total number of faults in the software from the initial
point in which the software is observed [1].

Model Form: Hazard Function Z (ti)= [N-(i-1)] where N = Number of errors present in the software at the beginning of the
test phase  = Proportional constant.

Mean value function,   t=N 1- exp -(t  and

Failure intensity function, [t]=N exp(- (t)) .

Fault/Failure Count (FC) Models: Number of faults or failures in a time interval is taken into consideration rather than
times between failures. The failure counts are assumed to follow a known stochastic process with a time dependent discrete
or continuous failure rate. The useful reliability parameters are calculated from the estimates obtained from the observed
value. Musa’s Basic Execution Time Model This model has had the widest distribution among the software reliability
models. This model was one of the first to use the actual execution time of software component on computer for modeling
process. Musa feels that execution time is more reflective of the actual stress induced on the software system than the amount
of the calendar time that has been elapsed [2]. This model can even use time between failures (TBF) as input failure data.
Hence, the categorization of models under TBF Models and FC Models is not rigid. It is entirely depends on what type of
failure data is fed to the model and failure data can be converted from one form to the other to suit the model failure data
requirement.

Software Dependability and Its Attributes: Software Reliability is one of the attributes to define dependability
(trustworthiness) of the software. The other important attributes are availability, maintainability, safety, confidentiality and
integrity [1]. The availability is the preparedness of the software for use. Unless the software is available or fit for use, it is
directly affecting reliability and proper functioning of the software and indirectly the performance of the software. The
maintainability of the software deals with “down time” or minimum Mean Time to Repair (MTTR) of a software/ system and
ease with services are restored. This is one of the important attribute which affects performance of the system. Hence, both
reliability and maintainability are important to assure proper availability of the software system to carry out stated functions
or operations in stipulated time. The functional failure or sub-optimal functional behavior affects the performance and
performance improvement initiatives for the software. The availability of a software system can be measured in 3 different
ways depending on the time elements taken into consideration. They are:

1. Inherent availability
2. Achieved availability and
3. Operational availability.

Inherent availability is the probability that a software system will operate satisfactorily when used under stated conditions in
an ideal support environment without any scheduled or preventive maintenance [6]. The software system includes both
software and hardware. Hence, inherent availability is system availability which is given as below Inherent Availability, Ai =
MTBF/(MTBF +MTTR) where MTBF is Mean time between failures and MTTR is mean time to repair [6]. It is obvious
from above relation that in order to have higher inherent availability, the MTTR should be as low as possible [7].

Model Form: Mean failure value function, (t)=  0 1- exp -B1t and

Failure intensity function = ( = 0exp  -) where βo = Total number of faults that would be detected in the time limit,
1 = a constant & failure intensity decay parameter. The product of o and β1 = 0 where 0 is initial failure intensity at the
start of execution.

Illustration 1
Assume that initial failure intensity is 5 failures per execution hour and the failure intensity decay parameter is 0.01 per
failure. Let the failure experienced or the fault detected in a time limit is 100 (mean failure value function), Then current
failure intensity is ,
5exp[(- 0.01)(100)]= 5exp(- 1)= 1.84 per execution hour.

Research Paper
Impact Factor: 3.996
Peer Reviewed & Indexed Journal

IJMSRR
E- ISSN - 2349-6746

ISSN -2349-6738

International Journal of Management and Social Science Research Review, Vol.1, Issue – 29, Nov-2016 Page 204

Illustration 2
Let us assume a system is having MTBF of 10 execution hours (CPU Hrs) and MTTR which is equivalent to 1.6 execution
hours (CPU Hrs), then Inherent availability 10/(10+ 1.6)= 0.8620 Achieved availability is taking into consideration active
maintenance down time resulting from both preventive and corrective maintenance. Hence, achieved availability is given by
following relationship [6]. Achieved availability,

Aa = MTBM/(MTBM + M)

where MTBM is mean time between maintenance and M is the mean active down time resulting from both preventive and
corrective maintenance. If preventive maintenance and corrective maintenance are ignored, then MTBM becomes MTBF.
The achieved availability is usually less than inherent availability of the system.

Illustration 3
Let us assume a system with MTBM value of 8 execution hours (CPU Hrs) and M value equivalent to 4 execution hours
(CPU Hrs), then Achieved availability is 8/(8+ 4)= 0.66 .The operational availability considers supply down time and
administrative downtime which is given as follows [6]. Operational availability,

Ao = MTBM/(MTBM + MDT), where MTBM is mean time between maintenance and MDT is supply downtime and
administrative downtime. Hence, operational availability is usually less than inherent availability and achieved availability.

Illustration 4
Consider the previous illustration with same value for MTBM. But by assuming a MDT value equivalent to 6 execution
hours, then Operational availability = 8/(8 + 6) = 0.5714 The system availability (As) of a software system which comprises
both software and hardware components is usually expressed as a complex function of reliability (Rs), maintainability (Ms)
and supply effectiveness (Ss)

System Availability
As = f(Rs, Ms , Ss) Hence, system availability is a function of tradeoff between reliability and maintainability of the system
with stated value of supply effectiveness. As far as the system is functioning properly without any failure, maintainability
will be low and all performance related issues and performance improvement may be worked out according to a stated plan.
However, for a failed system in terms of functions and performance which is under maintenance, the maintainability issues of
the system should be taken into consideration along with changed reliability to work out availability of the system. Hence,
performance improvement and management should be addressed with altered perspective. The other attributes of
dependability are safety, confidentiality and integrity. The absence of serious consequences to the environment is safety. The
non-occurrence of unauthorized disclosure of information is called confidentiality and absence of alteration of information is
called integrity [1]. These three attributes are very important to place highest trust on the functioning of software. The
functioning of the software and its improvement in performance will not be useful unless the safety, confidentiality and
integrity is achieved for the software. Hence, it is very essential to ensure dependability (trustworthiness) of the software
before launching on any performance enhancement and management program. The software should be built from
requirements stage to installation stage taking all six important dependability attributes into account. Ignoring any of these
attributes will cost the organization to pay the customer in terms of penalties and other types of compensation.

Software Performance and Its Improvement
Software performance is an indicator of how well a software system or component meets its requirements for timeliness. This
is measured in terms of response time and throughput. The response time is the time required to respond to a request. It may
be the time required for single transaction or end to end time for user task. In embedded systems, it is the time required to
respond to the events or number of events processed in a time interval. Throughput of a system is number of requests that can
be processed in some specified time interval .When failure intensity function increases indicating presence of more faults to
be removed to enhance reliability of the software, response time of software increases and throughput decreases. As indicated
in earlier two software reliability models, either time between failures should be extended in case of TBF models or fault
count in a time interval has to be reduced to achieve higher reliability which may contribute to higher performance with
improved response time and throughputs. Responsiveness is the ability of a system to meet its objectives for response time or
throughput. Scalability is the ability of the system to meet its response time or throughput objectives as demand for new
software function increases.

Illustration 5: From Illustration 1, the number of faults is 1.8 per execution hour (CPU hr). As the time advances, more
faults are uncovered and with improved testing efficiency, number of faults uncovered usually decreases. It may not be the

Research Paper
Impact Factor: 3.996
Peer Reviewed & Indexed Journal

IJMSRR
E- ISSN - 2349-6746

ISSN -2349-6738

International Journal of Management and Social Science Research Review, Vol.1, Issue – 29, Nov-2016 Page 205

case always. If we assume that second set of faults are detected during 3rd execution hour of the software, then we can take
MTBF as 2 execution hours (CPU Hr) between first and third hour of execution. MTBF indicates failure free operation of
software. The performance parameter response time is indirectly related to MTBF. If R indicates the response time of a
software for a task, then R = K/(MTBF) where K is a constant. As MTBF increases response time decreases. In our
illustration, R = K/2 (assuming a linear relationship between R and MTBF which may not be true always). The second
performance parameter, throughput in a time interval is directly dependent on MTBF. As MTBF increases, number of
transactions in the time interval (MTBF) increases. In our illustration MTBF is 2 execution hours. If 10 transactions occur in
2 execution hours, then it would be 20 transactions if MTBF is improved to 4 execution hours. In this case, through put is
constant. Even the number of transactions in a time interval (improved MTBF) can be increased to improve throughput of the
software. Hence, reliability parameter MTBF has impact on performance parameters response time and throughput. These
facts may be corroborated with failure data taken from Reference [2] which gives number of illustrations to calculate MTBF
and other reliability parameters using specific software reliability model. The reference [9] gives illustrations to calculate
performance parameters response time and throughput with the support of data. The guiding principle for good response time
and throughput is failure free operation of software (higher reliability with higher MTBF values). Hence, it is just the logical
extension to establish the relationship between reliability parameter MTBF and performance parameters response time &
throughput since both of these parameters are independently supported by data and illustration in references .It may look
exploratory in nature as far as exact relationship between these parameters. Nevertheless, it holds true for simple & general
applications. The exact relationship can be worked out in a new or subsequent research paper as future work. The higher
reliability of the software ensures higher scalability for a new function without much difficulty as far as other performance
parameters are addressed in tandem. The following are the consequences of performance failures—damaged customer
relations, business failures, and additional resources and reduced competitiveness. The causes which hinder the optimum
performance of software may be due to internal and external conditions.

Software Performance Management
The software performance has to be managed to deliver optimum performance.
There are basically two different methods to manage software performance [10].

Reactive Performance Management Reactive performance management focuses on actions or remedies that will be taken,
once the software performance problem is encountered

Proactive Performance Management (with Inputs from Software Reliability Engineering) It anticipates potential software
performance problems and steps to detect and removal of those problems early in process.

The characteristics of performance management.
1. Quantify product usage by specifying reliability and performance level so that failure free functioning and optimum

performance is possible.
2. A performance engineer does track and communicate the issues related to performance and everyone is informed

about his role in performance management. He should closely work with Reliability Engineer to check the product
trustworthiness (Reliability, availability and maintainability). Performance is not possible without reliable product or
service.

3. An organization wide standard business processes and best practices in software reliability engineering (SRE)
should be established to meet any unforeseen outcome related to reliability and performance problems.

4. Analyze, manage and improve the reliability of the software predicted by software reliability models and match the
outcome reliability with reliability assured to the customers. Improvement in reliability with presence of very few
faults will improve the performance of the software.

5. The software reliability models can be used in conjunction with SPE models, while designing software execution
models and subsequent system execution models.

6. Reliability and maintainability are found to be more dominating attributes among other attributes.

Conclusions
1. An overview of concepts related to software reliability, software reliability models along with two important models

are discussed to highlight their importance in analyzing the failure behavior of software.
2. Failure behavior of the software as predicted by software reliability models has important implication in

understanding the performance of the software and its improvement.

3. Resources can be allocated and optimized by selecting suitable non-testing methods and also testing methods by
targeting objective software reliability and optimal performance of the software.

Research Paper
Impact Factor: 3.996
Peer Reviewed & Indexed Journal

IJMSRR
E- ISSN - 2349-6746

ISSN -2349-6738

International Journal of Management and Social Science Research Review, Vol.1, Issue – 29, Nov-2016 Page 206

4. The dependability of software with six attributes are discussed, highlighting the importance of each of them. But
reliability and maintainability are found to be more dominating attributes among other attributes. Nonetheless, other
attributes are equally important to form overall dependability perspective.

5. The different definitions related to availability of software are discussed along with formulation and illustrations.
The availability as function of reliability, maintainability and supply effectiveness are discussed. Hence, reliability
emerges as an important attribute directly affecting the performance of the software.

6. Software performance management with two different approaches (Reactive and Proactive Performance
Management) are discussed in detail with inputs from SRE to Proactive performance management.

7. The guidelines given in proactive performance management can be followed for good results in reliability and
performance by combining best practices in both the fields.

References
1. M. Lyu, “Handbook of Software Reliability Engineering,” IEEE Computer Society Press, McGraw Hill, New York,

1996.
2. J. D. Musa, “Software Reliability Engineering,” McGraw Hill Book Company, New York, 1999.
3. H. Pham, “System Software Reliability,” Springer, Berlin, 2006.
4. Cagataycatal and Banudiri, “A Systematic Review of Software Fault Prediction Studies,” Expert Systems with

Applications, Elsevier, Vol. 36, No. 4, 2009, pp. 7346- 7354. doi:10.1016/j.eswa.2008.10.027
5. Cagataycatal, “Software Fault Prediction, A Literature Review and Current Trends,” Expert Systems with

Applications, Elsevier, Vol. 38, 2011, pp. 4626-4636.
6. L. S. Srinath, “Reliability Engineering,” 3rd Edition, Affiliated East-West Pvt. Limited, Ellis Horwood, 1998.
7. T. Nakagawa, “Advanced Reliability Models and Maintenance Policies,” Springer, Berlin, 2008.
8. C. U. Smith, “Software Performance Engineering, What Can It Do for You?” CMG, Michelson Presentation,

Washington, 2011
9. S.Yamada, M.Obha and S.Osaki, “S.Shaped Reliability Growth modeling for Error Detection”, IEEE Transaction

Reliability.

