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Abstract 

We say that one lattice point is visible from another if no third lattice point lies on the line joining them. A lattice point 

visible from the origin is called a visible point. To find the visible points is very useful in probability theory. In this paper we 

deal with counting visible points in more general regions. 

 

Introduction 

Returning to the study of the density of V in L, we may ask for the limiting fraction of visible points in an expanding region 

of more general shape than a rectangle.  Under what conditions can we be sure the limit exists, and if it exists must it be equal 

to . 

 

One’s imagination immediately pictures an amoeba – like region expending thrusting forth long tentacles toward special 

lattice points, and clearly nothing could be concluded if such pathology were allowed.  We will discuss the case in which a 

region R which has a positive area expands by linear magnification about the origin.  Depending on whether the origin is 

contained in the interior of R, or lies on its boundary, or is exterior to R, the expanding region will envelop the whole plane, 

or a portion of it, or will disappear into the distance. 

 

To begin, R may be an arbitrary bounded point set.  If t > o, let tR denote the image of R under the mapping f(z) = tz.  Let N 

(tR) be the number of lattice points, excluding the origin, In tR. 

 

Let N’ (tR) be the number of visible points in tR. From the known result  Where z = min (x, 

y), which counts the visible points of a rectangle, is readily extended to give the following relationship between N and N’. 

 

Theorem 1.1 

 

. 

 

Proof: 

Both sums are finite since R/k eventually contains no lattice point except perhaps the origin.  Theorem 1.1 is formally 

identical to a known inversion formula satisfied by the Mobious function. 
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From this the number N (X, Y) of visible points in Q(x, y) is exactly. 

.  Here the sum is finite, since the terms are zero when k>min(x,y).is, of course, the case R = Q(X, Y). 

 

The number N (X, Y) of visible points in Q(x, y) is exactly. 

.  Here the sum is finite, since the terms are zero when k>min(x, y). 

 

From the known result Everyunimodular transformation of L maps V onto itself. 

 

We can deduce that as t N' (tR)N(tR)  6/ , under certain restrictions on R. Hereafter we shall write N(t) and N’(t) 

instead of N(tR) and N’(tR).  Define N,(t) to be the number of lattice squares contained entirely in tR, and N2(t) to be the 

number of lattice squares having at least one point in tR.  Then we have the inequalities. 

 

            N1 (t) <N (t) < N2 (t).                              (I) 

Note 

 N1 (t) = no lattice point. 

 N2 (t) = contain at least one lattice point. 

 

We will now assume that R possesses a positive area A(R) given by  

 

A(R) =                        (II) 

 



 

IJMDRR 

E- ISSN –2395-1885 

ISSN -2395-1877 

Research Paper 
  Impact Factor: 3.567 

Peer Reviewed Journal 

International Journal of Multidisciplinary Research Review, Vol.1, Issue – 5,   May -2016. Page -   77 

 

 

Then A(tR) = t
2
 A(R), and we will write A(t) for A(tR) and A for A(1).  From (E) and (F) we have 

 

                                     N (t)  At
2
.                                       (III) 

 

Let e=l.u.b. {t/N (t) = 0}, which is finite because of (G) and greater than zero because R is bounded. 

 

For any t > c.  Let k(t) be the largest integer k such that N(t/k) > o.  We note that. 

 

                                    (IV) 

 

For. By definition we must have 

 

N1 (t)  N (t)  N2 (t) 

 

 
 

And hence  

    

 

 

We may choose the size of R to be such that c=1. 

 

Finally, let P (t) = N (t) – A (t). 

 

Then, 

 

 
 

 
 

                                  
 

         
 

                                                                       M (t)=  

 

                                                
Hence proved. 
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Result:  1.1 

If R is bounded and has a positive area, then N’(t)/N(t)  if, and only if. 

 
We shall be content with a very generous sufficient condition. 

 

Theorem 1.2 

The condition P(t) = 0(t) implies 

 
 

Proof:  

If R is a region whose boundary is a rectifiable curve. 

If |P(t)| < Mt for all t > 0, then] 

 

 
 

Suppose R is bounded by a curve C of length S.  Then C can pass through no more than 4[S]+4 lattice squares.   

 

For suppose we cut C into [S] arcs of unit length plus one are of length {S}, and arrange these individually in the lattice to 

maximize the total number of squares passed through.  Each segment can pass through at most four squares, giving a 

maximum total of 4[S]+4, and this is also a maximum total for the original curve C since it constituted one of the possible 

arrangements of the segments.  Thus the boundary tC of tR can pass through at most 4[tS]+4 squares. 

 

But since N1(t) <N(t) <N2 (t) and N1(t) < A(t <N2 (t),  we have |P(t)|=|N(t) – A(t)|< N2(t) – N1(t), and N2(t) – N1(t) is the 

number of squares with at least one point inside and at least one point outside or tR.  The boundary curve tC must pass 

through each of these squares, so there cannot be more than 4[tS]+4 of them. 

 

Thus |P(t)|< N2(t) – N1(t) < 4[tS]+4=O(t). 

 

We note that the condition P(t) = 0(t) is satisfied, in particular, if R is convex, for bounded convex sets have rectifiable 

boundaries. 

 

Equations (II) and (III) do not furnish a direct generalization of result Where z = min (x, y) 

because we have considered only the case in which R expands by linear magnification about the origin.  In a similar manner 

we could treat the case of expansion under the transformation f(x, y) = (t1 x1 t2 y), of which the rectangle in the mean of 

 is  if s≥3 and infinite if s=2 the variance is  is a special case.  However, we shall not pursue 

the details here. 

 

References 

1. G.H Hardy and M.  Wright. An Introduction the theory of numbers, 3
rd

 Edition, Oxford (1954) 

2. F. Mertens, Journals  math, 77, 289 – 338. 

3. W.J. Leveque, Topics in number theory, Volume – I Addison – Wesley. 

4. J. Christopher, Am. Math. Monthly, 63. No.6, (399 – 401) 

5. H.L. Alder, Am. Math, monthly, 65, No.9, ( 690 – 692) 

6. V. A. Golubev, Mathesis, Tome LXVII, 11 – 20. 

7. D.R. Anderson and T.M. Apostol, Duke math, Journal, 20, No.2, (211 – 216). 


